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ABSTRACT OF DISSERTATION 

 

LOWER BACK BIOMECHANICS AT NON-CHRONIC STAGE OF LOW BACK PAIN 

Prior studies have reported differences in lower back biomechanics during activities of 

daily living between individuals with and without chronic low back pain (LBP). 

Nevertheless, the literature on lower back biomechanics of patients with non-chronic LBP 

is scant. Therefore, the objective of this study, as the first step towards future prospective 

studies, was to investigate the lower back biomechanics in patients with non-chronic LBP. 

Case-control studies were conducted wherein measures of lumbo-pelvic coordination 

during bending and return tasks as well as measures of mechanical demand on the lower 

back during lifting tasks in the sagittal plane were investigated between patients with non-

chronic LBP and matched asymptomatic individuals. Patients were enrolled into the study 

at the non-chronic stage of their LBP. We found distinct difference in measures of lumbo-

pelvic coordination as well as mechanical demands on the lower back between patients 

with non-chronic LBP and controls. Reduced lumbar range of flexion and slower task pace 

as well as the more in-phase and less variable lumbo-pelvic coordination observed in 

patients with non-chronic low back pain, may be the result of a neuromuscular adaptation 

to reduce the forces and deformation in the lower back tissues and avoid pain aggravation. 

Such a neuromuscular adaptation, however, resulted in a larger shearing demand on the 

lower back. Persistent abnormal lumbo-pelvic coordination might play a role in transition 

to chronic stage or recurrence of LBP. However, such inferences need to be further 

investigated using prospective studies as well as clinical trials involving a combination of 

physical and psychological treatments aimed at correction of lumbo-pelvic coordination.
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Chapter 1. Introduction 

1.1. Acute and chronic low back pain and causal mechanisms 

The complexity and multi factorial nature of low back pain (LBP) pose a significant 

challenge for its management. Despite extensive research, the pathomechanism and risks 

factors associated with progression of LBP from an acute episode to chronic and/or 

recurrent LBP is poorly understood (Biering-Sørensen 1982, Hides et al. 2001).The 

recurrence rate following an acute episode of LBP is very high ranging from~25% to ~55% 

(Von Korff et al. 1993, Hoy et al. 2010, Melloh et al. 2011, da Silva et al. 2017). Patients 

with chronic and/or recurrent LBP account for the most of LBP-related disability and total 

cost (Spengler et al. 1986, Frymoyer and Gordon 1989, Fromoyer et al. 1991). It is, 

therefore, critically important that risk factors responsible for transition from an acute 

episode to chronic and/or recurrent LBP are understood, as the efficient management of 

the first-episode LBP has been suggested to reduce the recurrence rate (Hides et al. 

2001). 

 

One likely causal mechanism for occurrence and recurrence of LBP is the direct and/or 

indirect stimulation of the embedded nerve endings within the lower back tissues by 

mechanical loads (i.e., forces and deformations). The instantaneous or cumulative forces 

and deformations of lower back tissues has been suggested to initiate a first episode of 

LBP. Specifically, the mechanical risk factors (e.g., awkward posture, high loading manual 

tasks, exposure to vibration and specific sporting activities) can alter lower back 

mechanical loads beyond injury thresholds and initiate low back injury. Therefore, a 

developed understanding of differences in the lower back mechanical loads (i.e., forces 

and deformations) between asymptomatic individuals and those who are at different 

stages of the lower back problem may help identify and provide early management to 

patients whose LBP is likely driven by abnormalities in the lower back mechanical loads.  

 

1.2. Studying patients with low back pain using biomechanical methods 

Given difficulties associated with direct measurement of lower back mechanical 

environment, indirect methods, including kinematic-, kinetic-, and electromyography 

(EMG)-based methods, have been widely used to study abnormalities in the lower back 
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mechanical environment of patients with chronic LBP. In contrast to research concerning 

patients with chronic LBP, only a few studies have investigated the lower back mechanical 

environment in patients with non-chronic LBP. 

 

1.2.1. Kinematic-based methods 

The studies implemented kinematic-based method have investigated magnitude aspects 

of lumbo-pelvic coordination (e.g., pelvic and thoracic rotations, lumbar flexion, lumbo-

pelvic/-thoracic ratio), timing aspects of lumbo-pelvic coordination (e.g., continuous 

relative phase of pelvis and thorax, variability in relative phase of pelvis and thorax), 

lumbar lordosis/pelvic tilt and thoracic kyphosis, lumbar proprioception, and trunk higher 

order kinematic.  

Patients with chronic LBP 

There has been considerable differences in population of earlier studies (e.g., age, 

gender, BMI, occupation, criteria for inclusion/exclusion of patients with LBP) and 

heterogeneity in participants of each single study (e.g., differences in participants 

characteristics, mixing patients with LBP from different subgroups). Nevertheless, the 

general trend from earlier studies is that patients with chronic LBP, compared to 

asymptomatic individuals, exhibitsmaller lumbar range of deformation (flexion: 41.6° vs. 

50.6°; lateral: 23.3° vs. 28.4°; axial: 22.4° vs. 25.7°) when reaching their trunk range of 

motion in three planes of motion, poorer lumbar proprioception (position/reposition 

differences: 5.2° vs. 2.6°), and slower lumbar deformation (i.e., exhibiting smaller peak 

velocity or acceleration).  

Patients with non-chronic LBP 

Paquet et al. (1994) reported similar ranges of flexion but smaller peak angular velocity 

for lumbar and hip between 10 patients with non-chronic LBP and 10 asymptomatic 

individuals during trunk forward bending and backward return tasks. In another study, 

Aluko et al. (2011) reported smaller mean and peak angular acceleration of lumbar spine 

for patients with non-chronic LBP during trunk forward bending and backward return. For 

a similar task, we have also recently observed that patients with non-chronic LBP perform 

the task slower but, in contrast to report by Paquet et al (1994), they exhibited smaller 

lumbar range of flexion as compared to asymptomatic individuals. For spinal posture 
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during standing, Christie et al. (Christie et al. 1995) reported larger lumbar lordosis for 

patients with chronic LBP and larger thoracic kyphosis and a forward head position for 

patients with non-chronic LBP when compared to asymptomatic individuals. During sitting, 

patients with non-chronic LBP indicated larger thoracic kyphosis compared to 

asymptomatic individuals. Nakipoglu et al. (Nakipoglu et al. 2008) did not find any 

differences in the lumbosacral angles of patients with chronic vs. non-chronic LBP using 

standing and lateral lumbosacral x-rays (Nakipoglu et al. 2008). 

 

1.2.2. EMG-based methods 

Patients with chronic LBP 

EMG- and kinetic-based methods have been used by researchers to study neuromuscular 

behavior and lower back loads in patients with chronic LBP. The findings from EMG-based 

methods have been more in favor of the theory of secondary pain-related trunk 

neuromuscular adaptation rather than the belief of primary neuromuscular impairment in 

patients with LBP. In general, earlier studies have reported larger activation/co-activation 

of trunk muscles and absence of flexion-relation phenomenon in patients with chronic LBP 

vs. asymptomatic individuals. Kinetic-based methods try to directly estimate the effects of 

abnormalities in trunk motion and neuromuscular behavior on changes in lower back loads 

in patients with LBP.  

Patients with non-chronic LBP 

Goubert et al. (Goubert et al. 2017) investigated the structure and function lower back 

muscles in patients with continues (all days of a week) chronic, non-continues (~ half days 

of a week) chronic, and recurrent (recovered from multiple episodes) LBP. They reported 

higher fat cross-sectional area and lean muscle fat index of the multifidus and erector 

spinae in continuous chronic LBP compared to the other groups as well as lower metabolic 

activity of these muscles in patients with recurrent LBP compared to the other two groups. 

Danneels et al. (2002) compared EMG activity of the multifidus and the iliocostalis 

lumborum pars thoracis between patients with chronic LBP, non-chronic LBP, and 

asymptomatic individuals during coordination, stabilization and strength exercises. 

Specifically, they reported lower EMG activity of the multifidus for patients with chronic 

LBP compared to asymptomatic individuals during the coordination exercises, no 
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difference in EMG activity of muscles between the groups during the stabilization 

exercises, and lower EMG activity of both muscles for patients with chronic LBP versus 

asymptomatic individuals during strength exercises. 

 

1.2.3. Kinetic-based methods 

Patients with chronic LBP 

Kinetic-based methods may vary from simple link-segment models (used to estimate 

mechanical demands on the lower back) to sophisticated detailed models (used to 

estimate muscle forces and spinal loads as well as stress and strain experienced in lower 

back tissues). In a few studies investigating lower back loads in patients with chronic LBP 

there are reports of smaller, similar, or larger lower back loads in patients with chronic LBP 

vs. asymptomatic individuals (Bazrgari and Xia 2017). 

Patients with non-chronic LBP 

Using a link-segment model, Shum et al. (2007, 2010) estimated lower back loads in 

patients with non-chronic LBP during forward bending and backward return as well as sit-

to-stand and vice versa tasks. For trunk forward bending and backward return, the 

moment demand on the lower back was smaller in patients at the end range of trunk 

bending but was larger at smaller bending angles. For sit-to-stand and vice versa, the 

moment demand of the task on the lower back in sagittal plane was smaller for patients 

compared to controls. 

 

1.3. Research gap 

To the best of our knowledge the reviewed 8 studies above are the only studies wherein 

patients with non-chronic LBP were investigated using biomechanical methods. 

Furthermore, despite the current knowledge about lower back mechanical environment in 

patients with LBP who are either at chronic or non-chronic stage (i.e., from cross-sectional 

studies), it remains unclear if and how lower back mechanical environment of patients with 

non-chronic LBP changes as they recover or progress to chronic stage. 
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1.4. Objectives and hypotheses 

The objectives of this study, as the first step towards future prospective studies, were:  

1) To investigate the lower back mechanical environment in patients with non-chronic LBP 

and age- and gender-matched asymptomatic individuals using measures of magnitude 

aspects of lumbo-pelvic coordination during trunk forward bending and backward return. 

We hypothesized that in an effort to reduce the forces and deformation in the lower back 

tissues, and hence avoid pain aggravation due to mechanical stimulation, patients with 

non-chronic LBP would display an altered lumbo-pelvic coordination (i.e., smaller lumbar 

range of flexion, smaller thoracic range of rotation and/or larger compensatory pelvic 

range of rotation, smaller angular velocity, deceleration and acceleration of lumbar flexion) 

during trunk forward bending and backward return. 

2)  To investigate the lower back mechanical environment in the same groups using 

measures of timing aspects of lumbo-pelvic coordination during trunk forward bending and 

backward return. We hypothesized that patients with non-chronic LBP will adopt a 

protective motor control strategy, resulting in more in-phase and less variable lumbo-pelvic 

coordination, to reduce the likelihood of painful deformation of spinal tissues under 

dynamic tasks. 

3) To investigate the lower back mechanical environment, using kinetics biomechanical 

methods, in the same groups through measures of mechanical demand on the lower back 

during lowering and lifting tasks in the sagittal plane. Considering the assumed smaller 

thoracic range of rotation and smaller deceleration and acceleration of lumbar flexion in 

patients with non-chronic LBP, we hypothesized that the moment demand on the lower 

back would be smaller for patients vs. controls. However, since patients are assumed to 

adopt a larger pelvic rotation, we further hypothesized that the shearing and axial 

components of the task demand will, respectively, be larger and smaller in patients with 

non-chronic LBP versus controls. 

 

1.5. Organization of the dissertation 

In Chapter 2 magnitude aspects of lumbo-pelvic coordination (objective 1) will be 

investigated and compared between patients with non-chronic LBP and asymptomatic 

individuals during forward bending and backward return. In Chapter 3 timing aspects of 
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lumbo-pelvic coordination (objective 2) using measures of continuous relative phase and 

its variability will be compared between the same groups and during the same task. The 

effects of differences in lumbo-pelvic coordination between the two groups on their lower 

back loads (objective 3) will be investigated in Chapter 4 using a link segment model of 

lower limbs and pelvis. Chapter 5 will be devoted to the discussion and conclusion drawn 

from the entire study and the suggestions for future research. 
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Chapter 2. Comparison of Lumbo-Pelvic Kinematics during Trunk Forward 

Bending and Backward Return between Patients with Acute Low Back Pain and 

Asymptomatic Controls 

This chapter reproduced from a published manuscript, Shojaei, I., E. G. Salt, Q. Hooker, 

L.R. Van Dillen and B. Bazrgari (2017). "Comparison of Lumbo-Pelvic Kinematics during 

Trunk Forward Bending and Backward Return between Patients with Acute Low Back Pain 

and Asymptomatic Controls" Clinical Biomechanics 41: 66-71. 

 

2.1. Introduction 

Low back pain (LBP) has been suggested to be the leading cause of disability, ahead of 

290 other health related conditions(Buchbinder et al. 2013). In the United States ~ 80% of 

people are affected by LBP at some point during their lifetime; with an estimated annual 

healthcare expenditure of ~ $100 billion(Hart et al. 1995, Katz 2006). The lack of clarity in 

mechanisms driving pain presents challenges to the management of LBP. In only ~10% 

of LBP cases (i.e., specific LBP) the pain can be related to severe spinal pathology such 

as infection or tumor(Krismer and Van Tulder 2007). 

 

The lower back mechanical environment, specifically forces and deformations 

experienced by lower back tissues, has an important causal role in occurrence of LBP 

(Marras 2000, Adams et al. 2006); thus, a developed understanding of differences in the 

lower back mechanical environment between individuals with and without LBP is 

imperative to characterize the mechanisms driving various types of LBP. Although studies 

have been conducted to delineate such differences, there are limitations to these studies. 

Direct in-vivo assessment of the lower back mechanical environment is not currently 

possible due to technical limitations, and ethical considerations associated with the use of 

the existing measurement techniques(Winkelstein et al. 2002, Ledet et al. 2005). Instead, 

indirect in-vivo measures of the lower back mechanical environment, like trunk kinematics 

and electromyography of trunk muscles, have been used by researchers(Granata and 

Marras 1993, Cholewicki et al. 1995, McClure et al. 1997, Wong and Lee 2004, Kim et al. 

2013). These indirect measures have also been used by clinicians to assess the patient’s 

status and guide the treatment (Rittweger et al. 2002, Scannell and McGill 2003, Carpes 
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et al. 2008). Findings from studies involving indirect measures of the lower back 

mechanical environment, particularly kinematic measures, have considerable variability 

and are not conclusive. Several studies have reported restrictions on the relative 

contribution of lumbar flexion to trunk rotation in patients with LBP vs. controls(Porter and 

Wilkinson 1997, Wong and Lee 2004). In contrast, other studies have found no differences 

or larger contribution of lumbar flexion to the forward bending in a LBP cohort(McClure et 

al. 1997). The reason for such inconsistency in results may be in part due to differences 

in the clinical history, LBP subtypes and personal characteristics of the participants. It has 

been reported that in only 54% of earlier studies of lumbo-pelvic kinematics were the 

patient and control groups comparable for age, gender and body mass index (BMI)(Laird 

et al. 2014). Furthermore, most of prior studies included patients with chronic LBP and it 

is not clear whether their finding can be generalized to patients with acute LBP. Although 

only ~ 10 % of patients with acute LBP develop chronic LBP (Andersson 1999, Carey et 

al. 2000, Waddell 2004, Majid and Truumees 2008), treatment of LBP has been suggested 

to be more effective before the chronic stage(Waddell and Burton 2001).  

 

The objective of this study was to investigate differences in the lower back mechanical 

environment, using measures of trunk kinematics, between females with and without acute 

LBP. Although participants’ ages were comparable between the two groups in our study, 

we included age as an independent variable to further explore any group by age 

interaction. We included the age-related analysis because of our recent findings of age-

related differences in lower back biomechanics (Shojaei et al. 2016, Shojaei et al. 2016, 

Vazirian et al. 2016). We also investigated the effects of task pace (i.e., fast versus self-

selected) on lower back kinematics. We hypothesized that, in an effort to reduce the forces 

and deformation in the lower back tissues, and hence avoid pain aggravation due to 

mechanical stimulation, patients with acute LBP would display reduced lumbar range of 

flexion compared to the asymptomatic controls during the forward bending and backward 

return task. We further hypothesized that such reduction of lumbar flexion in patients 

would affect the task performance, reflected in smaller thoracic range of rotation, or/and 

result in larger compensatory pelvic range of rotation. We similarly hypothesized that 

patients would make an effort to decrease the forces and deformations in their lower back 

tissues by adopting a slower pace as compared to asymptomatic controls that would be 

reflected in smaller values of the maximum angular velocity, deceleration and acceleration 
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of lumbar flexion. Whether the hypothesized differences between patients and controls 

would be magnified with aging (i.e., interaction of group and age) was unclear and left as 

an exploratory objective of this study. 

 

2.2. Methods 

2.2.1. Study Design  

A case-control study design was used wherein patients with acute LBP (health care 

provider diagnosed LBP ≤ 3 months) were recruited to complete a set of experimental 

procedures that had been used in a baseline study involving asymptomatic individuals 

between 20 and 70 years old(Shojaei et al. 2016, Vazirian et al. 2016). Upon completion 

of data collection from the patients with LBP, the data from all participants in the baseline 

study who were gender matched and were within the same age range (i.e., 40-70 years 

old) were extracted for comparison with the data collected from the patients. 

 

2.2.2. Participants 

The patients with acute LBP were referred to the study by their primary physician, whereas 

the asymptomatic controls were recruited via advertisement. The final sample included a 

group of 19 asymptomatic subjects (controls) and a group of 19 patients with acute LBP 

(cases). To minimize the effects of gender on the mechanical behavior of the lower 

back(Nachemson et al. 1979, Sullivan et al. 1994, Shojaei et al. 2016) and considering 

that the incidence of LBP is higher among females(Manchikanti 2000), we only recruited 

female participants in this study and accordingly only used data obtained from females 

from the baseline study. There were no age, stature, body mass, or BMI differences 

(Table.1) between the two groups (p=0.05). Exclusion criteria for asymptomatic controls 

were any history of LBP, self-reported musculoskeletal disorders or other medical 

conditions that might have substantially influenced the experimental results (Shojaei et al. 

2016, Vazirian et al. 2016). All asymptomatic controls also reported engaging in regular, 

moderate levels of physical activity. Patients with acute LBP (e.g., ≤ 3 months) were 

excluded if they had significant cognitive impairment, intention to harm themselves or 

others, or substance abuse (Radloff 1977, Ewing 1984, Brown and Rounds 1995, Borson 

et al. 2000). All participants in these studies completed an informed consent procedure 
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approved by the University of Kentucky Institutional Review Board before any screening 

procedure. 

 

Table 2-1: Mean (SD) participants characteristics 

Group Controls Patients t-value p-values 

Age (years) 56 (9) 58 (9) 0.723 0.474 

Stature (m) 1.64 (5) 1.63 (7) -0.592 0.557 

Body mass (kg) 70(12) 76(17) 1.553 0.130 

BMI 25.7(4.1) 27.5(4.6) 1.608 0.117 

 

 

2.2.3. Experimental Procedures 

Participants completed two trunk forward bending and backward return tasks while 

standing on the center of a force platform (AMTI, Watertown, MA). During the first task 

participants were instructed to stand in an upright posture for five seconds, bend forward 

using a self-selected pace to reach their maximum trunk rotation (without excessively 

aggravating their LBP), hold their maximum trunk rotation for 5 seconds, extend back up 

to the original upright position, and stand again in an upright posture for five seconds. For 

the second task, participants performed the same task but as fast as possible and without 

a pause at the maximum trunk rotation. Prior to the conduct of these tasks, the desired 

method of performing them, wherein knees were kept extended throughout the tasks and 

arms were hanged in front at full flexed posture, was demonstrated to participants by one 

of research personnel. All participants completed the task with a self-selected pace prior 

to the task with a fast pace. Each task was repeated three times. During these tasks, trunk 

kinematics were tracked using wireless Inertial Measurement Units (IMUs; Xsens 

Technologies, Enschede, Netherlands) attached superficial to the T10 and the S1 spinous 

process(Shojaei et al. 2016). The sampling rate of the inertial units was 50 Hz. Sensors 

placed on the T10 and the S1 were assumed to measure rotations of pelvis and thorax as 

rigid bodies whereas the difference between these two rotations (i.e., relative rotation of 

thorax with respect to the pelvis) was considered to represent lumbar flexion/extension as 

a joint. 
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2.2.4. Data analysis 

The Xsens MTw™ system is a miniature wireless inertial measurement unit system 

incorporating 3D accelerometers, gyroscopes, magnetometers, and a barometer. We 

have tested the accuracy of our sensors and the reliability of using the Xsens system in 

our lab by a unique testing fixture (Shojaei et al. 2016) which enables us to generate 

known rotation with <1 deg accuracy. The mean (SD) accuracy of our sensors is 0.5 (0.3) 

deg and the reliability of using the Xsens system in our lab, quantified using intra class 

correlation coefficients, is excellent (i.e., ~1.000). Using the rotation matrices extracted 

from the IMUs, rotation quaternions (a rotation about a unit vector n through an angle α 

for each IMU) were obtained and used to calculate the pelvic and thoracic rotations in the 

sagittal plane(Roetenberg et al. 2009). The initial standing posture was regarded as the 

reference posture. At each time point, lumbar flexion was calculated from the difference 

between the thoracic and pelvic rotations (Fig. 1 and Fig. 2). Angular velocity and 

acceleration of the lumbar spine during the fast paced tasks were obtained using a 

successive numerical differentiation procedure (Fig. 3). To remove high-frequency noise, 

specifically amplified by differentiating, the kinematic raw data were filtered at 6Hz using 

a fourth order, bidirectional, Butterworth filter(Winter 2009, Kristianslund et al. 2012). 

 

 
Figure 2-1: Definition of the pelvic and thoracic rotations as well as the local coordinate 

system of IMUs. Y axis is normal to the plane (the right-hand rule). Lumbar flexion is the 

difference between the thoracic and pelvic rotations. 
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2.2.5. Statistical analysis 

For each task, pelvic and thoracic ranges of rotation as well as lumbar range of flexion 

were extracted for statistical analyses. Specifically, range of rotation/flexion was 

considered to be the maximum recorded rotation/flexion with respect to its value at 

reference posture. The peak values of angular velocity, acceleration (i.e., increase in 

absolute value of velocity), and deceleration (i.e., decrease in absolute value of velocity) 

of the lumbar spine during the forward bending and backward return phases of the task 

with fast pace also were extracted for statistical analyses. For each variable, the mean 

value across the three trials was used. All statistical procedures were conducted in SPSS 

(IBM SPSS Statistics 22, Armonk, NY, USA), and in all cases a p value smaller than 0.05 

was considered as statistically significant. One set of mixed-model analysis of variance 

(ANOVA) tests were conducted on the dependent variables of pelvic and thoracic range 

of rotations and lumbar range of flexion. The between subjects factors were group (with 

and without LBP) and age. The within subjects factor was motion pace (self-selected and 

fast). To be consistent with our earlier baseline study, the age factor was considered to 

have three levels each related to a decade of life between 40 and 70 years (i.e., 40-50, 

50-60, 60-70). A second set of mixed-model ANOVA tests were conducted to test for the 

effects of group, age, and motion phase on peak values of lumbar angular velocity, angular  
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Figure 2-2: Typical examples of pelvic and thoracic rotations as well as lumbar flexion for 

the tasks with a self-selected pace (top) and a fast pace (bottom). 

acceleration, and deceleration during the as fast as possible condition. The between 

subjects factors were group and age. The within subjects factor was motion phase 

(forward bending or backward return). Significant ANOVA tests were followed by post hoc 

tests using Tukey’s procedure. 
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Figure 2-3: Typical examples of lumbar angular velocity (top) and acceleration (bottom). 

To facilitate automatic extraction of maximum values for lumbar acceleration (i.e., increase 

in absolute value of velocity) and deceleration (i.e., decrease in absolute value of velocity), 

the second derivative of lumbar flexion (i.e., containing acceleration and deceleration) was 

obtained through the numerical differentiation of the absolute values (i.e., positive only) of 

lumbar angular velocity. 

 

2.3. Results 

Thoracic range of rotation: 

While there were no significant differences (Table. 2) in the thoracic range of rotation 

between patients (104.6°(13.6°)) and controls (99.1°(13.4°)), the thoracic range of rotation 

was larger during tasks with fast (105.3°(12.9°)) vs. self-selected (98.4°(13.7°)) paces. 

Furthermore, there was no age-related difference (Table. 2) in thoracic range of rotation 

(40-50: 99.7°(12.7°); 50-60: 108.0°(11.2°); 60-70: 97.4°(14.6°)). There was also no 

significant interaction effects of independent variables on the thoracic range of rotation 

(Table. 2). 
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Table 2-2: Summary of statistics for the effects of group (with and without LBP), motion 

pace (self-selected and fast) and age (40-50, 50-60, and 60-70) on pelvic and thoracic 

ranges of rotation and lumbar range of flexion.  

 
Thoracic 
Rotation 

Pelvic 
Rotation 

Lumbar 
Flexion 

Group 
F 1.40 17.34 10.69 
p 0.246 <0.001 0.003 

Pace 
F 24.87 61.67 4.97 
p <0.001 <0.001 0.033 

Age  
F 2.43 3.70 3.58 
p 0.104 0.036 0.039 

Group X Pace 
F 0.18 0.01 0.91 
p 0.672 0.918 0.346 

Group X Age 
F 0.36 0.15 0.41 
p 0.700 0.861 0.666 

Age X Pace 
F 0.84 0.24 1.19 
p 0.442 0.789 0.317 

Group X Age X 
Pace 

F 0.84 0.37 1.57 
p 0.441 0.691 0.223 

Boldface indicates a significant effect 

 

Pelvic range of rotation: 

Pelvic range of rotation was larger in patients (61.6° (12°)) vs. controls (43.4° (14.5°)) and 

was larger in tasks with fast (56.7° (15.2°)) vs. self-selected (48.3° (16°)) pace (Table. 2). 

The effect of age also was significant (Table. 2) such that pelvic range of rotation was 

larger in the two older groups compared to the younger group (Fig. 4). There was no 

significant interaction effects of independent variables on the pelvic range of rotation 

(Table. 2). 
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Figure 2-4: Age-related differences in pelvic range of rotation (top), and lumbar range of 

flexion (bottom). Error bars indicate standard deviations. 

 

Lumbar range of flexion: 

Lumbar range of flexion was smaller in patients (43° (11.2°)) vs. controls (55.7° (11.3°)) 

and was smaller during tasks with a fast (48.6° (13.3°)) vs. self-selected (50.1° (12.5°)) 

pace (Table. 2). The effect of age on lumbar range of flexion was significant with a smaller 

range of flexion in the oldest vs. youngest group (Table. 2 and Fig. 4). 

Lumbar angular velocity, acceleration, and deceleration during the task with fast pace: 

Peak angular velocity of lumbar flexion was higher in controls (94.7 deg/sec (25.9 

deg/sec)) than in patients (65.5 deg/sec (31 deg/sec)) and was higher during the forward 

bending (84.7 deg/sec (33 deg/sec)) vs. backward return (78 deg/sec (28 deg/sec)) phase 

of the motion (Table. 3).  There was a significant three-way interaction of group X motion 

phase X age on lumbar angular deceleration (Table. 3). Specifically, during the forward 
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bending phase, the effect of group was significant (F=9.5, p=0.009) on peak lumbar 

deceleration of individuals in the 60-70 year old group such that the deceleration was 

larger in controls (259.8 deg/sec2 (89.2 deg/sec2)) than patients (137.4 deg/sec2 (55.2 

deg/sec2)) (Fig. 5). Moreover, during thebackward return phase, the effect of group was 

significant (F=22.5, p<0.000) on peak lumbar deceleration of individuals in the 50-60 year 

old group such that the deceleration was larger in controls (291.4 deg/sec2 (69.3 

deg/sec2)) than patients (140.2 deg/sec2 (38.3 deg/sec2)) (Fig. 5). Similarly, there was a 

significant (Table. 3) interaction of group X motion phase X age on the lumbar angular 

acceleration. Specifically, for the forward bending phase of the motion, the effect of group 

was significant (F=5.56, p=0.036) for individuals in the 60-70 year old group with larger 

lumbar acceleration in controls (213.2 deg/sec2 (73.9 deg/sec2)) vs. patients (132.2 

deg/sec2 (53.0 deg/sec2)) (Fig. 5). Furthermore, for the backward return phase of the 

motion, the effect of group was significant (F=8.95, p=0.011) for individuals in the 50-60 

years old group with larger lumbar acceleration in controls (265.3 deg/sec2 (79.0 

deg/sec2)) vs. patients (148.0 deg/sec2 (67.7 deg/sec2)) (Fig. 5). 

 

Table 2-3: Summary of statistics for the effects of group (with and without LBP), motion 

phase (forward bending and backward return) and age (40-50, 50-60, and 60-70) on the 

maximum values of lumbar velocity, deceleration, and acceleration. 

 
Lumbar 
Velocity 

Lumbar 
Deceleration 

Lumbar 
Acceleration 

Group 
F 7.08 6.84 2.88 
p 0.012 0.014 0.100 

Age  
F 1.89 1.50 1.13 
p 0.168 0.238 0.337 

Motion phase 
F 8.81 13.19 2.69 
p 0.006 0.001 0.111 

Group X Age 
F 0.30 0.34 0.56 
p 0.741 0.714 0.575 

Group XMotion 
phase 

F 1.49 2.04 9.76 
p 0.231 0.163 0.004 

Age XMotion 
phase 

F 2.83 1.95 4.64 
p 0.074 0.159 0.017 

Group X Age X 
Motion phase 

F 2.86 6.86 4.37 
p 0.072 0.003 0.021 

Boldface indicates a significant effect 
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Figure 2-5: The age X group X motion phase interactions in peak lumbar angular 

deceleration (i.e., decrease in absolute value of velocity) and acceleration (i.e., increase 

in absolute value of velocity). Error bars indicate standard deviations. 

 

2.4. Discussion 

The purpose of this study was to investigate differences in the lower back mechanical 

environment, using measures of trunk kinematics, between a group of asymptomatic 

controls and a group of patients with acute LBP. The thoracic range of rotation was similar 

in both groups. However, the contribution of pelvic rotation and lumbar flexion to range of 

thoracic rotation was, respectively, larger and smaller among patients compared to 

controls.  These findings confirmed our first hypothesis. Furthermore, as we hypothesized, 

patients adopted a slower pace compared to asymptomatic controls which was reflected 

in smaller values of the maximum angular velocity, deceleration and acceleration of 

lumbar flexion. While the main effect of age was significant on lumbo-pelvic kinematics 

with smaller pelvic rotation and larger lumbar flexion in younger vs. older population, there 



www.manaraa.com

19 
 

was not any interaction effect of group X age on lumbo-pelvic kinematics indicating that 

aging similarly affects individuals with and without acute LBP. 

 

A fair number of studies have investigated the effects of LBP on lumbo-pelvic kinematics, 

however, only a few have included patients with acute LBP (Wong and Lee 2004). Our 

finding of smaller lumbar range of flexion in patients with acute LBP is consistent with 

those reported by Wong and Lee (2004). However, due to different methods of 

measurement between the two studies, we were not able to compare pelvis range of 

rotation, though, they reported smaller hip flexion (vs. larger pelvis rotation in our study) 

in patients with acute LBP(Wong and Lee 2004). Considering a population with 

comparable personal characteristics and accounting for the effects of age and motion 

pace, our findings demonstrated clear differences (Table. 2) in lumbo-pelvic kinematics 

between individuals with and without acute LBP. In studies with a more heterogeneous 

sample where the confounding variables are not considered in the analysis, it is not clear 

whether the reported differences in kinematics were purely due to LBP or other variables 

such as personal or task characteristics (Sullivan et al. 1994, McGregor and Hughes 2000, 

Intolo et al. 2009, Shojaei et al. 2016). Therefore, our findings might have better isolated 

and highlighted the likely LBP-related differences in lower back kinematics. 

 

The smaller contribution of lumbar flexion to thoracic rotation, adopted by patients with 

acute LBP, may be an attempt to reduce tension in posterior elements of the ligamentous 

spine (posterior longitudinal ligaments, posterior aspect of annulus fibrosus, and facet 

capsule) that have embedded pain sensitive nerve endings (Adams et al. 2006). These 

results are also consistent with the reported persistent activation of the lumbar erector 

spinae muscles and the absence of flexion-relaxation phenomenon among patients with 

LBP which has been suggested to be an attempt to stabilize injured spinal structures and 

protect them from further injury (Colloca and Hinrichs 2005). In other word, smaller lumbar 

flexion is associated with smaller passive contribution of lower back tissues to spine 

equilibrium; a difference in contribution that should be offset by increase in active muscle 

contribution. 
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The smaller lumbar contribution in patients with LBP compared to controls did not affect 

the task performance; both groups displayed a similar amount of thoracic rotation. The 

similar amount of thoracic movement was the result of using more pelvic rotation by patient 

with LBP compared to the controls. Large pelvic rotations impose higher shearing 

demands on the lower back (Shojaei et al. 2016) and are also associated with projection 

of a larger shearing component of internal muscle forces on the spine (Arjmand and 

Shirazi-Adl 2005). Therefore, an increased level of contact force on facet joints of the 

lumbar spine could be the negative cost of the adopted posture displayed by patients with 

acute LBP. 

 

Earlier studies on lumbo-pelvic kinematics during forward bending and backward return 

mostly have been conducted under stationary conditions (imaging studies) (Jensen et al., 

1994; Pearcy et al., 1984) or slow and self-selected paces (McClure et al. 1997, Wong 

and Lee 2004, Kim et al. 2013). Including a faster motion pace enabled us to better 

delineate differences in biomechanics between people with acute LBP and asymptomatic 

controls. Specifically, while the thoracic rotation increased in the fast vs. self-selected 

pace, the lumbar flexion decreased. Such posture adoption is probably a safer strategy 

for reducing stress in the lower back tissues because of the viscoelastic behavior and the 

inertial demand of fast tasks(Bazrgari et al. 2008). 

 

Higher order lumbo-pelvic kinematics have been suggested to be reliable objective 

measures of the trunk motion (Kroemer et al. 1990, Aluko et al. 2011)and can well 

distinguish patients with chronic LBP from asymptomatic controls(Marras et al. 1993). 

Similar to the study by Marras et al. (1993), where much larger difference was found in 

lumbar angular acceleration than angular velocity and flexion between patients with 

chronic LBP and controls (i.e., 5 degree, 49 deg/sec, and 251 deg/sec2 differences in the 

respective values of lumbar flexion, lumbar angular velocity, and lumbar angular 

acceleration), greater differences in angular acceleration were found in the present study 

(i.e., 12.7 deg, 29.2 deg/sec, and >81 deg/sec2 differences in the respective values of 

lumbar flexion, lumbar angular velocity, and lumbar angular acceleration. 
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Although we didn’t control for inter subject variability such as pain level, LBP related 

disability, fear of movement, and general health status, lumbo-pelvic kinematics were 

clearly different between LBP patients and asymptomatic controls. However, it remains 

unclear whether such kinematic differences are the cause or consequence of LBP. Such 

a research question can be addressed in future studies through conducting longitudinal 

studies. The observed kinematic differences suggest likely differences in lower back 

biomechanics between people with acute LBP and people without LBP, however, a better 

understanding can be achieved regarding altered neuromuscular strategy using model 

based estimations of trunk muscle forces and spinal loads (Shojaei et al. 2016). Finally, 

our results on age-related differences in lumbo-pelvic kinematics were consistent with our 

earlier findings, however, the potential inferential errors due to small sample size should 

be kept in mind when interpreting these results. 
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Chapter 3. Timing and Magnitude of Lumbar Spine Contribution to Trunk Forward 

Bending and Backward Return in Patients with Acute Low Back Pain 

This chapter reproduced from a published manuscript, Shojaei, I., M. Vazirian, E.G. Salt, 

L.R. Van Dillen and B. Bazrgari (2017). "Timing and Magnitude of Lumbar Spine 

Contribution to Trunk Forward Bending and Backward Return in Patients with Acute Low 

Back Pain" Journal of biomechanics53: 71-77. 

 

3.1. Introduction 

Lumbo-pelvic coordination during trunk forward bending and backward return is often 

assessed by clinicians to better identify biomechanical abnormalities in patients with low 

back pain (LBP) (Esola et al. 1996, Hestœk and Leboeuf-Yde 2000, Whittaker 2007). 

Alterations in lumbo-pelvic coordination denote changes in neuromuscular control of trunk 

motion as well as changes in the load sharing between passive and active components of 

the lower back (Davis et al. 1965, Farfan 1975, Davis and Jorgensen 2005, Hashemirad 

et al. 2010). Both neuromuscular control and load sharing have been recognized to play 

a role in LBP development (van Dieën and Nussbaum 2000, Panjabi 2003, Leinonen 

2004, Hashemirad et al. 2009, Abouhossein et al. 2011, Dubois et al. 2011). The 

assessment of lumbo-pelvic coordination may simply involve evaluation of the relative 

contributions of lumbar flexion and pelvic rotation to trunk motion at the end range of 

forward bending or may include more in-depth evaluation of timing and magnitude of such 

relative contributions throughout the course of motion (Lariviere et al. 2000, Silfies et al. 

2009, Kim et al. 2013, Pries et al. 2015, Mokhtarinia et al. 2016).  

 

In asymptomatic individuals, the lumbar contribution to forward bending has been reported 

to be dominant in the early stage of trunk motion, whereas pelvis contribution increases 

toward the end of motion and is dominant at the late stage of motion (Esola et al. 1996, 

Lee and Wong 2002, Pal et al. 2007, Tafazzol et al. 2014, Vazirian et al. 2016, Vazirian et 

al. 2017, Vazirian et al. 2017). Conversely, backward return starts with a small lumbar 

contribution that gradually increases toward the end of motion (McClure et al. 1997, 

Granata and Sanford 2000, Lee and Wong 2002, Pal et al. 2007). In terms of timing of 

motion, it has been reported that in forward bending, lumbar motion tends to start sooner 
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than pelvic motion and lumbar motion remains ahead of pelvic motion throughout the 

forward bending. In the backward return lumbar motion remains behind pelvic motion (Pal 

et al. 2007, Thomas and Gibson 2007). Compared to asymptomatic individuals, lumbo-

pelvic coordination in patients with LBP is generally more in-phase and less variable and 

involves smaller lumbar contribution to the trunk motion (Selles et al. 2001, Seay et al. 

2011, Mokhtarinia et al. 2016). There are, however, some exceptions to such general 

trend of observed differences in the literature which could be due to heterogeneity of LBP 

(e.g., different subtypes of LBP), differences in patient’s personal characteristics, and 

difference in performing forward bending and backward return (e.g., pace of task, 

presence of load, etc.) (Granata and Sanford 2000, Van Wingerden et al. 2008, Silfies et 

al. 2009, Kim et al. 2013, Vazirian et al. 2016). Kim et al. (2013), for instance, observed 

larger lumbar contribution to the trunk motion in a subgroup of patient with LBP who were 

identified to have “lumbar flexion with rotation syndrome”. Silfies et al. (2009) reported a 

less in-phase and more variable lumbo-pelvic coordination in patients with LBP compared 

to asymptomatic controls under a reaching task. Despite considerable research related to 

lumbo-pelvic coordination, most of prior studies included patients with chronic LBP and it 

is not clear whether their findings can be generalized to include also patients with acute 

LBP. Due to the simplicity of the assessment, an evaluation of lumbo-pelvic coordination 

in clinical practice could prove useful to identify biomechanical etiologies for LBP and to 

direct patient treatment; thus a further understanding of this construct in acute LBP is 

needed. 

 

Authors of the present study have recently reported the differences in lumbo-pelvic 

coordination between patients with acute LBP and asymptomatic controls by calculation 

of the relative contributions of lumbar and pelvis to trunk motion at the end point of forward 

bending. Compared to asymptomatic controls, patients with LBP implemented smaller 

lumbar flexion and larger pelvic rotation when bending from standing posture to the end 

point of forward bending. These results clearly distinguished patients from asymptomatic 

controls in discrete end points, however, they don’t offer any information related to 

potential differences in lumbo-pelvic coordination throughout the trunk forward bending 

and backward motion. Further characterization of lumbo-pelvic coordination throughout 

the entire task cycle could provide more in-depth information about the impact of acute 

LBP on timing and magnitude aspects of lumbo-pelvic coordination (Selles et al. 2001, Pal 

et al. 2007, Thomas and Gibson 2007, Mokhtarinia et al. 2016, Vazirian et al. 2016). In 
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other words, potential biomechanical abnormalities in the lower back of patients with LBP, 

particularly due to neuromuscular impairments, could be better identified by assessment 

of lumbo-pelvic coordination throughout the entire task. Therefore, the objective of this 

study was to investigate differences in timing and magnitude aspects of lumbo-pelvic 

coordination between patients with acute LBP and asymptomatic controls during forward 

bending and backward return. Lumbar contribution to the trunk rotation was investigated 

at each quartile of forward bending and backward return as the magnitude aspect of 

lumbo-pelvic coordination. The timing aspect of lumbo-pelvic coordination was 

investigated using the continuous relative phase method (Lamb and Stöckl 2014). We 

hypothesized that patients with acute LBP would display a more in-phase and less variable 

lumbo-pelvic coordination that involves a reduced lumbar contribution to the trunk motion 

compared to the asymptomatic controls during the entire period of the forward bending 

and backward return task. 

 

3.2. Methods 

3.2.1. Study Design and Participants  

A case-control study design was used wherein 19 female patients (aged 40-70 years old) 

with acute LBP (health care provider-diagnosed LBP ≤ 3 months) completed a set of trunk 

forward bending and backward return tasks. Data for 19 asymptomatic female controls 

(aged 40-70 years old) were extracted from an earlier study (Vazirian et al. 2017, Vazirian 

et al. 2017). All participants completed an informed consent procedure approved by the 

University of Kentucky Institutional Review Board before participation. Age, stature, body 

mass, and body mass index (BMI) for the two groups were comparable (Table.1). 

Asymptomatic controls with any history of LBP or musculoskeletal disorders were 

excluded (Shojaei et al. 2016, Vazirian et al. 2017). Patients with acute LBP were excluded 

if they had any significant cognitive impairment, intention to harm themselves or others, 

or substance abuse. 
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Table 3-1: Mean (SD) participants characteristics 

Group Controls Patients t-value p-values 

Age (years) 56 (9) 58 (9) 0.723 0.474 

Stature (m) 1.64 (5) 1.63 (7) -0.592 0.557 

Body mass (kg) 70(12) 76(17) 1.553 0.130 

BMI 25.7(4.1) 27.5(4.6) 1.608 0.117 

 

3.2.2. Experimental Procedures  

Two wireless Inertial Measurement Units (IMUs; Xsens Technologies, Enschede, 

Netherlands) were attached superficial to the T10 and the S1 spinous process of 

participants to collect kinematics of thorax and pelvis as rigid bodies (50 Hz). A Kalman 

filter was used to minimize any potential effect of noise on the data. Each participant 

completed two trunk forward bending and backward return tasks in the sagittal plane; one 

at a preferred pace and the other at a fast pace. During the task with preferred pace, 

participants stood in an upright posture for 5 seconds, bent forward using a preferred pace 

to reach their maximum trunk rotation, held their maximum trunk rotation for 5 seconds, 

returned back to the initial upright position, and stood again for 5 seconds. During the task 

with fast pace, participants performed the same task but with their fastest possible pace 

and without a pause at the maximum trunk rotation. Each task pace was repeated three 

times, and participants completed the task with the preferred pace prior to the task with 

the fast pace. 

 

3.2.3. Data analysis  

Using the kinematics data collected with the IMUs, pelvic and thoracic rotations were 

found with respect to the standing posture. At each time instant, flexion/extension of 

lumbar spine (i.e., as a deformable segment between thorax and pelvis) was calculated 

as the difference between the pelvic and thoracic rotations. To calculate the lumbar 

contribution, the forward bending and the backward return of each task was divided into 

quarters of equal thoracic rotation. The ratio of range of lumbar flexion/extension over the 

range of thoracic rotation was then calculated for each quartile. Lumbar contribution in 

each quartile of forward bending and backward return task was finally calculated as the 
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average of the above ratio for the same quartile across the three repetitions of the task. 

The thoracic and pelvic rotation data were also used to calculate the continuous relative 

phase between thorax and pelvis by initially generating the phase planes of pelvic and 

thoracic rotations according to (Lamb and Stöckl 2014), and then subtracting the pelvic 

phase angle from the thoracic phase angle at each instant of the task. To characterize the 

timing aspect of lumbo-pelvic coordination, two measures from the continuous relative 

phase (CRP) curve of forward bending and backward return were extracted: 1) the mean 

absolute relative phase (MARP), and 2) the deviation phase (DP) (Stergiou et al. 2001). 

Briefly, the mean and standard deviation of the absolute value of relative phase for each 

percentile of trunk forward bending and backward return across the three repetitions of 

each task were initially obtained. Subsequently, the average of the calculated mean and 

standard deviation values over the entire forward bending and backward return were 

respectively calculated as MARP and DP values. By definition, MARP values closer to 0 

represent a more ‘‘in-phase’’ lumbo-pelvic coordination (i.e., more synchronous 

movement of segments) whereas values closer to π radians represent a more ‘‘out-of-

phase’’ lumbo-pelvic coordination (i.e., less synchronous movement of segments). 

Moreover, a smaller DP represents a lumbo-pelvic coordination with less trial-to-trial 

variability (i.e., a more stable motion pattern). 

 

3.2.4. Statistical Analysis 

For each task and phase of trunk motion (i.e., forward bending and backward return), the 

lumbar contribution in each quartile, MARP, and DP were extracted for statistical 

analyses. All statistical procedures were conducted in SPSS (IBM SPSS Statistics 23, 

Armonk, NY, USA), and in all cases a p value smaller than 0.05 was considered as 

statistically significant. Mixed-model analysis of variance (ANOVA) tests were conducted 

on the dependent variables with group (with and without LBP) and age (40-50, 50-60, 60-

70) as the between-subjects factors and motion pace (preferred and fast) as the within-

subjects factor. Mixed-model ANOVA assumptions were verified, and significant ANOVA 

tests were followed by post hoc tests using Tukey’s procedure. 
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3.3. Results 

3.3.1. Interaction effects 

Forward bending: 

The lumbar contribution in the 1st quarter was larger (40-50: F=4.95, p=0.045; 60-70: 

F=7.90, p=0.016) in the control vs. patient group only during the task with fast pace and 

for individuals in the 40-50 (40s) and60-70 (60s) year-old age groups (Fig. 1). This lumbar 

contribution was also larger (F=10.47, p=0.018) in the task with preferred vs. fast pace 

only for patients in the 60-70 (60s) year-old age group (Fig. 1). Additionally, lumbar 

contribution in the 4th quarter was larger (F=6.22, p=0.041) in the task with preferred vs. 

fast pace only for patients in the 50-60 (50s) year-old age group. This lumbar contribution 

was also larger (F=5.97, p=0.012) in the 60-70 (60s) versus 50-60 (50s) year-old age 

group only among patients and under task with fast pace (Fig. 2). 
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Table 3-2: Summary of statistical results for all outcome measures during trunk forward bending and 

backward return. LC: lumbar contribution. MARP: mean absolute relative phase. DP: deviation phase 

Forward Bending 

LC: 1st quarter LC: 2nd quarter LC: 3rd quarter LC: 4thquarter MARP DP 

F p F p F p F p F p F p 

Group (G) 15.86 <0.001 17.81 <0.001 11.36 0.002 7.39 0.011 5.52 0.025 11.94 0.002 

Pace (P) 0.07 0.787 108.02 <0.001 20.80 <0.001 6.90 0.013 4.99 0.033 15.08 0.001 

Age (A) 2.60 0.090 5.71 0.008 3.64 0.038 1.67 0.205 1.53 0.233 3.18 0.055 

G XP 0.77 0.388 2.32 0.137 0.11 0.739 0.75 0.394 0.60 0.445 2.38 0.133 

G XA 0.44 0.651 0.47 0.620 0.58 0.568 0.92 0.411 0.74 0.483 2.78 0.078 

A XP 0.41 0.670 0.25 0.779 0.15 0.859 1.14 0.332 0.66 0.524 0.22 0.806 

G X A X P 4.09 0.026 0.18 0.839 2.37 0.110 4.81 0.015 1.02 0.371 2.19 0.129 

Backward Return 

LC: 1st quarter LC: 2nd quarter LC: 3rd quarter LC: 4th quarter MARP DP 

F p F p F p F p F p F p 

Group (G) 9.59 0.004 15.21 <0.001 17.58 <0.001 12.30 0.001 6.60 0.015 4.94 0.034 

Pace (P) 27.15 <0.001 44.03 <0.001 19.74 <0.001 3.41 0.074 1.62 0.213 11.42 0.002 

Age (A) 3.28 0.051 5.01 0.013 4.32 0.022 0.76 0.476 0.67 0.519 2.71 0.082 

G XP 3.90 0.057 0.43 0.517 0.91 0.347 5.33 0.028 0.45 0.506 0.79 0.382 

G XA 1.12 0.340 0.35 0.711 0.14 0.870 0.32 0.729 0.07 0.930 0.60 0.557 

A XP 1.65 0.208 2.00 0.153 1.20 0.315 2.97 0.066 1.17 0.324 0.56 0.576 

G X A X P 3.92 0.030 1.30 0.287 1.48 0.244 5.21 0.011 2.93 0.068 0.07 0.935 
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Figure 3-1: The simple main effects of group (a) and task pace (b) on lumbar contribution 

(LC) were significant in the 1st quarter of forward bending. Error bars indicate positive 

standard deviations. The symbols * and + indicate significant paired differences. 

Figure 3-2: The simple main effects of task pace (a) and age (b) on lumbar contribution 

(LC) were significant in the 4th quarter of forward bending. Error bars indicate positive 

standard deviations. The symbol * indicates significant paired differences. 

 

Backward return: 

The lumbar contribution in the 1st quarter was larger (F=14.71, p=0.012; F=9.37, p=0.022) 

during the task with preferred vs. fast pace only for controls in the 40-50 (40s) and60-70 

(60s) year-old age group (Fig.3). This lumbar contribution was also larger (F=5.01, 

p=0.020) for controls in the 40-50 (40s) vs. controls in the 50-60 (50s) year-old age 

group(Fig.3). 
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Figure 3-3: The simple main effects of task pace (a) and age (b) on lumbar contribution 

(LC) were significant in the 1st quarter of backward return. Error bars indicate positive 

standard deviations. The symbols * and + indicate significant paired differences. 

 

Additionally, the lumbar contribution in the 4th quarter was larger (F=5.12, p=0.043) for 

controls in the 60-70 (60s) year-old age group vs. patients in the same age group only 

during the task with fast pace (Fig.4). This lumbar contribution was also larger (F=17.62, 

p=0.009) in the task with preferred vs. fast pace only for controls in the 50-60 (50s) year-

old age group (Fig.4).Furthermore, this lumbar contribution was larger (F=21.26, p=0.004) 

during the task with preferred vs. fast pace only for patients in the 60-70 (60s) year-old 

age group (Fig. 4). 
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Figure 3-4: The simple main effects of group (a) and task pace (b and c) on lumbar 

contribution (LC) were significant in the 4th quarter of backward return. Error bars indicate 

positive standard deviations. The symbol * indicates significant paired differences. 

 

3.3.2. Main effects 

Group differences 

During forward bending and backward return, the lumbar contribution in the 2nd and 3rd 

quarters was smaller in the patient group than the control group (Table 2 and Table 3). 

Furthermore, the MARP and DP were smaller in the patient vs. control group during 

forward bending and backward return (Table 2 and Table 3). 
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Table 3-3: Mean (SD) of all outcome measures for different groups, task paces, and ages during trunk 

forward bending and backward return. MARP: mean absolute relative phase. DP: deviation phase. Post hoc 

tests results for the effects of age were indicated by lowercase Latin letters (a and b). 

Forward Bending 
Group Task Pace Age 

Patients Controls Preferred Fast 40-50 50-60 60-70

Lumbar 
contribution 

(%) 

1st quarter 49 (14) 70 (17) 60 (18) 60 (19) 73 (19) 56 (16) 55 (16) 

2nd quarter 42 (13) 60 (15) 57 (17) 45 (15) 65 (16)a 54 (14)b 51 (16)b 

3nd quarter 38 (12) 52 (15) 49 (15) 42 (14) 57 (18)a 45 (14)b 45 (13)b 

4nd quarter 31 (10) 41 (14) 38 (13) 34 (13) 43 (14) 34 (11) 36 (14) 

MARP (rad) 0.11 (0.14) 0.18 (0.12) 0.16 (0.11) 0.13 (0.10) 0.20 (0.13) 0.14 (0.11) 0.11 (0.07) 

DP x 103 38 (26) 71 (54) 71 (53) 38 (29) 84 (64) 43 (29) 47 (38) 

Backward Return 
Group Task Pace Age 

Patients Controls Preferred Fast 40-50 50-60 60-70

Lumbar 
contribution 

(%) 

1st quarter 26 (11) 40 (19) 38 (19) 28 (12) 45 (21) 31 (14) 35 (14) 

2nd quarter 36 (11) 52 (15) 49 (17) 40 (13) 58 (16)a 44 (14)b 44 (14)b 

3nd quarter 47 (12) 65 (13) 59 (16) 54 (15) 69 (13)a 57 (13)b 54 (17)b 

4nd quarter 52 (11) 69 (17) 62 (16) 59 (17) 68 (18) 62 (15) 59 (18) 

MARP (rad) 0.08 (0.08) 0.22 (0.12) 0.19 (0.12) 0.18 (0.09) 0.22 (0.12) 0.18 (0.10) 0.16 (0.10) 

DP x 103 39 (23) 60 (45) 63 (46) 36 (22) 70 (48) 40 (26) 45 (38) 
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The effects of task pace 

Lumbar contribution to the trunk rotation was smaller during the 2nd and 3rd quarters of 

both forward bending and backward return of the task with fast vs. preferred pace (Table 

3). MARP during forward bending and DP during both forward bending and backward 

return were smaller in the task with fast vs. preferred pace (Table 2 and Table 3). 

 

Age-related differences 

Lumbar contribution to the trunk rotation during the 2nd and 3rd quarters of both forward 

bending and backward return was larger in the 40-50 (40s) year-old age group than the 

other two age groups (Table 3). No age related differences in MARP and DP during 

forward bending and backward return were found (Table 2 and Table 3). 

 

3.4. Discussion 

The purpose of this study was to investigate differences in magnitude and timing aspects 

of lumbo-pelvic coordination between patients with acute LBP and asymptomatic controls 

during trunk forward bending and backward return. Lumbar contribution to the trunk motion 

in the 2nd and 3rd quarters of forward bending and backward return were smaller in patients 

with acute LBP vs. asymptomatic controls (i.e., partially confirming our hypothesis). 

Lumbo-pelvic coordination was more in-phase (i.e., denoted by smaller MARP values) 

and less variable (i.e., denoted by smaller DP values) in patients with acute LBP vs. 

asymptomatic controls (i.e., confirming our hypothesis).  

 

In our earlier study, lumbar contribution to the trunk motion at the end point of the forward 

bending was observed to be smaller in patients with acute LBP vs. asymptomatic controls. 

Our current finding, further suggest that such overall observed difference was due to 

smaller lumbar contribution in patients with acute LBP in the 2nd and 3rd quarters of forward 

bending and backward return. To the best of our knowledge, no other study has reported 

differences in lumbar contribution to trunk motion throughout the forward bending and 

backward return between patients with acute LBP and asymptomatic controls. However, 

in studies including patients with chronic LBP and individuals with a history of LBP similarly 
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smaller lumbar contribution to the trunk motion in all quartiles (Lariviere et al. 2000) as 

well as in the early stage (Porter and Wilkinson 1997) or middle stage (Esola et al. 1996) 

of forward bending and backward return have been reported. 

 

While in the current study the patients implemented a more in-phase motion of pelvis and 

thorax segments compared to asymptomatic controls, Wong and Lee (2004) reported no 

differences in timing aspects of the lumbo-pelvic coordination between a patient group 

and a asymptomatic control group. Such inconsistency in the results between the current 

study and the study by Wong and Lee (2004) could be due to the differences in the 

personal characteristics of participants (e.g., females ~ 57 years old in the current study 

vs. males ~ 40 years old in the study by Wong and Lee (2004) ), different methods of data 

analysis (CRP method in the current study vs. Cross-correlation method in the study by 

Wong and Lee (2004); see Vazirian et al. (2016b) for differences between the two 

methods) and potential differences in LBP subtypes. In studies including patients with 

chronic LBP, there are reports of a more in-phase lumbo-pelvic coordination in patients 

vs. asymptomatic controls during forward bending and backward return (Asgari et al. 2015, 

Mokhtarinia et al. 2016) as well as during walking and running (Selles et al. 2001, Seay et 

al. 2011). In contrast, Silfies et al. (2009) and Paquet et al. (1994) reported, respectively, 

a more out-of-phase and similar lumbo-pelvic coordination in patients vs. asymptomatic 

controls. Discrepancies in the results of studies concerning patients with chronic LBP may 

be attributed to the differences in the population studied (e.g., personal characteristics and 

LBP subtype), differences in the methods of data analysis, and differences in LBP severity 

at the time of study.   

 

The smaller contribution of lumbar flexion to trunk motion, as seen in patients with acute 

LBP in the current study, reduces passive contribution of lower back tissues in offsetting 

the physical demand of the task on the lower back. Such an alteration in lumbar 

contribution has been suggested to prevent painful deformation in posterior elements of 

the ligamentous spine (Colloca and Hinrichs 2005). More in-phase  and less variable 

lumbo-pelvic coordination, also known as phase-locked or rigid coordination (Mokhtarinia 

et al. 2016), is regarded as a protective motor control strategy to reduce the likelihood of 

painful deformation of spinal tissues under dynamic tasks. Such a strategy, however, 
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demands higher levels of trunk muscles activation and co-activation which in turn can lead 

to increased spinal loads and muscle fatigue (Marras et al. 2001, Bazrgari et al. 2008).  

The lumbar contribution in the 2nd and 3rd quarters was smaller during the task with fast 

vs. preferred pace for both forward bending and backward return. Similarly, MARP and 

DP were found to be smaller during the task with fast pace. These findings are consistent 

with earlier reports on the effects of task pace on trunk kinematics variability (Asgari et al. 

2015). The smaller lumbar contribution and more in-phase lumbo-pelvic coordination is 

consistent with the strategy to prevent painful deformation and injury (intensified by 

viscoelastic behavior and inertial demand of fast tasks) given the higher risk of injury under 

fast trunk motion (Bazrgari et al. 2008). 

 

Better understanding of differences in lumbo-pelvic coordination during trunk forward 

bending and backward return between individuals with and without LBP is clinically 

important (White III and Panjabi 1978, Panjabi 2003, Van Hoof et al. 2012). Specifically, 

quantification of such differences, as done in the present study, may improve the 

effectiveness of current management paradigm for LBP by positively impacting the 

diagnosis and treatment stages. More in-depth information about normal and abnormal 

trunk kinematics during trunk forward bending and backward return can help better match 

patient pathology with targeted treatments and decide whether a given treatment is 

moving the patient in the right direction. Additionally, our results indicate that lumbo-pelvic 

coordination varies with age which also should be considered in the diagnostic process. 

 

Although our findings contribute to the current understanding of the timing and magnitude 

of lumbar spine contribution to the trunk forward bending and backward return in patients 

with acute LBP, there are study limitations. First due the use of cross sectional data, we 

are unable to infer causality. As such we are unable to infer if study findings result in or 

are consequence to acute LBP. Second, we did not control for inter subject variability such 

as anthropometric measures, pain level, potential musculoskeletal abnormalities like foot 

shape abnormalities, flat back, hyper-lordosis as well as LBP-related disability, fear of 

movement, and general health status. With this being said, there is the possibility of 

additional unknown factors that affect study outcomes and were not included in our 

analysis. Third, although we controlled for age and gender-related differences, the 
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influence of differences in lumbar spine stiffness or mobility between groups on our finding, 

though perhaps minimal, should not be overlooked. Finally, while studying magnitude and 

timing aspects of lumbo-pelvic coordination in patients with acute LBP provides some 

insights into neuromuscular control of trunk motion and load sharing between lower back 

tissues, quantification of such variables requires detailed model-based studies (Bazrgari 

et al. 2008, Arjmand et al. 2009) which we plan to conduct in the future. 

 

In summary, the lumbar contribution to trunk motion during the 2nd and 3rd quarters of trunk 

forward bending and backward return phases of motion as well as MARP and the DP 

during the entire motion were smaller in the patient vs. the control group. These 

differences in lumbo-pelvic coordination of individuals with acute versus without acute LBP 

are likely to be due to a neuromuscular motor control strategy to temporarily reduce the 

painful deformations in the lumbar tissues. 
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Chapter 4. Mechanical Demands on the Lower Back in Patients with Non-chronic 

Low Back Pain during a Symmetric Lowering and Lifting Task 

This chapter reproduced from a published manuscript, Shojaei, I., E.G. Salt, Q. Hooker 

and B. Bazrgari (2018). "Mechanical Demands on the Lower Back in Patients with Non-

chronic Low Back Pain during a Symmetric Lowering and Lifting Task" Journal of 

biomechanics70: 255-261. 

 

4.1. Introduction 

Low back pain (LBP) is a leading cause of disability with substantial direct and indirect 

cost (Balagué et al. 2012, Hoy et al. 2014, Maher et al. 2017).Complexity and 

multidimensional nature of LBP’s risk factors pose a significant challenge for risk 

management strategies aimed at minimizing the level of exposure. Knowledge of the 

underlying mechanism(s) responsible for the development and/or persistence of LBP may 

open new avenues for managing this problem, via interventions that specifically target the 

underlying malfunctioning mechanism(s) rather than simply reducing generic risk factor 

exposures. Mechanical loads, specifically forces and deformations, in the lower back 

tissues can instantaneously or cumulatively exceed the tissues’ injury/pain threshold and 

directly or indirectly lead to LBP (Van Dieën et al. 1999, Adams 2004, Adams et al. 2006, 

Coenen et al. 2014). Therefore, a further understanding of this construct in patients with 

LBP could provide important insights into this health condition. 

 

Mechanical loads experienced in the lower back tissues are directly related to mechanical 

equilibrium and stability of the lumbar spine (Kingma et al. 2007, Arjmand et al. 2009). 

Spine equilibrium requires that forces in the lower back tissues, at a minimum level, to 

balance the mechanical demand of the task (i.e., due to body weight, external loads, and 

inertia forces). Forces in the lower back tissues maybe larger than the minimum required 

force for equilibrium in response to stability requirement of spine (i.e., the capacity to 

maintain mechanical equilibrium at presence of perturbation). Therefore, spinal loads are 

the resultant of two sets of forces that balance each other around the spine: 1) body 

weight, external loads, and inertia forces (i.e., collectively known as the mechanical 

demands of the task on the lower back) and 2) the active muscle forces as well as the 
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passive forces in the connective tissues attached to the spine (i.e., collectively known as 

the internal tissue responses) (Reeves and Cholewicki 2003, Adams et al. 2006, Bazrgari 

et al. 2008, Bazrgari et al. 2008). Potential injury mechanisms in the lower back due to 

mechanical loading have been shown in cadaveric studies (Adams 2004, Adams et al. 

2006). Lower back tissues can be injured due to excessive loads in the lumbar spine 

including compression force (e.g., vertebral body damage followed by internal disc 

disruption), bending moment in the sagittal plane (e.g., posterior ligaments and annulus 

damage), axial twist and shearing force (e.g., facet joints damage), and combined bending 

moment and compression force (e.g., annulus and nucleus damage) (Harris and Macnab 

1954, Roaf 1960, Osti et al. 1990, Van Dieën et al. 1999, Adams 2004, Adams et al. 2006). 

 

The potential causal mechanism for LBP via excessive mechanical load in lower back 

tissues (Van Dieën et al. 1999, Adams 2004, Adams et al. 2006, Coenen et al. 2014) has 

motivated many research to investigate whether exposure to certain physical factors 

increases mechanical loads in the lower back. For instance, muscle forces and spinal 

loads under dynamic lifting tasks (Granata et al. 1997, Fathallah et al. 1998), whole body 

vibrations (Kitazaki and Griffin 1997, Kong and Goel 2003, Bazrgari et al. 2008), sudden 

forward perturbations (Bazrgari et al. 2009, Shahvarpour et al. 2015), and sudden release 

loading (Bazrgari et al. 2009) have been estimated for asymptomatic individuals. Though 

the level and the type of association between exposure to physical factors and occurrence 

of LBP has been a source of disagreement in the literature (Waddell and Burton 2001, 

Adams et al. 2006, Roffey et al. 2010, Wai et al. 2010, Maher et al. 2017), collectively 

these studies suggest increase in mechanical loads under exposure to physical factors. 

Similarly, investigation of spinal loads in patients with LBP may help verifying whether 

treatments offered for LBP should also improve the lower back biomechanics.  

 

The published research on spinal loads in patients with LBP has mainly focused on 

persons with chronic condition. For lifting and lowering tasks from the floor to the hip level, 

Lariviere et al. (Larivière et al. 2002) did not find any difference in peak moment demand 

and compression forces on the spine in patients with chronic LBP vs. controls. They used 

link-segment models to estimate mechanical demands of the task on the lower back and 

polynomial equations to estimate spinal loads (Larivière et al. 2002). Using a two-
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dimensional link-segment model and a single equivalent extensor muscle, Norman et al. 

(Norman et al. 1998) reported larger peak and mean moments as well as larger 

compression and shearing forces on the spine of workers with chronic LBP vs. controls 

during regular work duties on the work site. Marras et al. (Marras et al. 2001) reported 

larger peak moment and compression as well as larger mean compression and shearing 

forces on the spine of patients with chronic LBP vs. asymptomatic controls using an EMG-

assisted model during lifting tasks in the sagittal plane. Shahvarpour et al. (Shahvarpour 

et al. 2016) reported similar muscle forces and spinal loads for patients with chronic LBP 

and asymptomatic controls using a detailed finite element model of spine during unstable 

sitting on a wobble chair. Notwithstanding the impact of experimental setup and modeling 

assumptions on findings of earlier studies, it is plausible to postulate differences in lower 

back loading between patients with chronic LBP and asymptomatic individuals; differences 

that are task dependent. To our best knowledge, there are only two studies of lower back 

loading in patients with non-chronic LBP. Using a link-segment model, Shum et al. (Shum 

et al. 2007, Shum et al. 2010) calculated the lower back moment during trunk forward 

bending and backward return as well as sit-to-stand and stand-to-sit tasks. The lower back 

moment was smaller in patients at the end range of trunk forward bending but was larger 

at smaller bending angles (i.e., 15, 30, and 45 degrees). For sit-to-stand and stand-to-sit 

activity, the lower back moment was smaller in the main plane of movement (the sagittal 

plane) but larger in frontal and transverse planes among patients with non-chronic LBP 

compared to asymptomatic controls. Similar to studies of patients with chronic LBP, 

differences in lower back loads between patients with non-chronic LBP and asymptomatic 

individuals appears to be task dependent. The limited number of studies on lower back 

loading in patient with LBP, particularly those with non-chronic LBP, along with task 

dependency of change in lower back loading call for further investigation of this important 

construct in patients with LBP. 

 

The objective of this study was set to investigate differences in mechanical demands of a 

task involving lowering and lifting a load in the sagittal plane on the lower back between a 

group of females with non-chronic LBP and a control group of asymptomatic females. 

Given that for the same two groups of participants, we have observed similar trunk range 

of rotation but smaller trunk angular acceleration in the patient vs. control group during 

free trunk forward bending and backward return (Shojaei et al. 2017), we hypothesized 
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that the moment demand on the lower back would be smaller for patients vs. controls. 

However, since patients adopted a larger pelvic rotation during the free trunk bending and 

return (Shojaei et al. 2017), we further hypothesized that the shearing and axial 

components of the task demand will, respectively, be larger and smaller in patients with 

non-chronic LBP versus controls (Shojaei et al. 2016). 

 

4.2. Methods  

4.2.1. Participants 

Nineteen females (aged 40-70 years) with health-care provider diagnosed non-specific 

LBP were included in this case-control study design to complete a set of experimental 

procedures that had already been used in a baseline study involving asymptomatic 

individuals between 20 and 70 years old (Shojaei et al. 2016, Shojaei et al. 2016, Vazirian 

et al. 2017, Vazirian et al. 2017). Patients were excluded if their LBP had lasted more than 

3 months as well as if they had significant cognitive impairment, intention to harm 

themselves or others, evidence of substance abuse, or did not have access to a telephone 

(Radloff 1977, Ewing 1984, Brown and Rounds 1995, Borson et al. 2000). Upon 

completion of data collection from the patient group, the data from female participants in 

the baseline study who were within the same age range (i.e., 40-70 years old) of the 

patients in this study were extracted  for comparison. Asymptomatic controls were 

recruited via advertisement and excluded if they had a recent (i.e., during the past year) 

history of LBP or musculoskeletal disorders (Shojaei et al. 2016, Shojaei et al. 2016, 

Vazirian et al. 2017, Vazirian et al. 2017). Independent-samples t-tests indicated no 

differences in age, stature, body mass, or body mass index (BMI) between the two groups 

(Table 1). Prior to data collection, all participants completed an informed consent 

procedure approved by the Medical University of Kentucky Institutional Review Board.   
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Table 4-1: Mean (SD) participant characteristics 

 Patients Controls t-value p-values 

Age (years) 58 (9) 56 (9) 0.723 0.474 

Stature (cm) 163 (7) 164 (5) -0.592 0.557 

Body mass (kg) 76 (17) 70 (12) 1.553 0.13 

BMI 27.5 (4.6) 25.7 (4.1) 1.608 0.117 

Level of pain* 3.84 (2.09) -- -- -- 

Level of disability* 6.16 (4.54) -- -- -- 

* The level of pain is based on the pain intensity construct of Wisconsin Brief Pain 

Inventory (Daut et al. 1983) and the disability is based on Roland Morris Disability Scale 

(Stroud et al. 2004). 

 

4.2.2. Experimental Procedures  

Straps were used to attach wireless Inertial Measurement Units (IMUs; Xsens 

Technologies, Enschede, Netherlands) superficial to the T10 vertebral process, sacrum 

(S1), right thigh (superior to lateral femoral epicondyle), and right shank (superior to lateral 

malleolus) (Shojaei et al., 2016c)1. IMUs placed at the T10 and the S1 levels were 

assumed to measure rotations of the thorax and pelvis as rigid bodies, while the difference 

between these rotations was considered to represent lumbar flexion/extension (Shojaei et 

al. 2016) (Fig 1). During the data collection, participants were instructed to complete one 

symmetric lowering and lifting task while standing in the center of a force platform (AMTI, 

Watertown, MA). Participants were asked to lower a 4.5 kg load from an upright posture 

to their knee height, pause for 5 seconds at this flexed posture, and then extend back to 

the initial upright standing posture. No more instruction was provided and the task was 

performed at the participants preferred cadence. The participants completed the task 

without practice, but if the proper way of performing the task was violated (for example, 

target height was not achieved) the task was repeated. The kinematics data tracked by 

IMUs and ground reaction forces collected from the force platform were sampled at the 

respective rates of 50 and 1000 Hz. Raw kinematics and kinetics data were low-pass 

                                                            
1IMUs were attached by student researchers. The first author of this manuscript was present in data 
collection of all participants and particularly assured the consistency of sensors locations between patients 
and controls. 
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filtered (cutoff frequencies of 6Hz and 50Hz, respectively) using a fourth order, 

bidirectional, Butterworth filter. 

 

4.2.3. Data Analysis 

A previously developed linked-segment model of the lower extremities and pelvis was 

used to estimate the net reaction forces and moments at the lower back (Shojaei et al. 

2016). Briefly, the model, developed in MATLAB (The MathWork Inc., Natick, MA, USA, 

version 8.6), included rigid bodies of seven segments (bilateral feet, shanks, and thighs 

as well as the pelvis) that were connected using frictionless point-contact joints (Fig. 1). 

 

 

Figure 4-1: Lateral view of the linked-segment model. Pelvic (P) and thoracic (T) rotations 

are shown in the figure and Fx, Fy and Mz denote ground reaction forces. Segments with 

solid lines were included in the “bottom-up” inverse dynamics approach. AL5-S1 (axial), SL5-

S1 (shearing), and ML5-S1 (moment) represent the mechanical demands of task on the lower 

back.  
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Using existing regression equations (Winter 2009), anthropometric and inertial properties 

of each segment were estimated from participant characteristics (i.e., height and mass). 

Rotation matrices were then extracted from IMUs to calculate angular rotation of 

segments, whereas angular velocity and acceleration were obtained using a successive 

numerical differentiation procedure (Fig. 2). The mean (SD) accuracy of IMUs (i.e., rotation 

measure), when used to measure a known rotation in our lab, was found to be .55 (.32) 

deg and their reliability of repeated measurements (between-day) quantified using intra-

class correlation coefficients was excellent (e.g., 1.000). Linear velocity and acceleration 

were found using the relationship between linear and angular velocity under the 

assumption that the position of ankle joint did not  
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Figure 4-2: A typical example of pelvic and thoracic rotations as well as lumbar flexion 

(top) during the lowering and lifting task. Thorax angular velocity (middle) and acceleration 

(bottom) were obtained using a successive numerical differentiation procedure. 

 

 

change throughout the entire task (Shojaei et al. 2016).Considering the symmetrical 

nature of the task, equivalent kinematics were assumed for right and left lower extremity 

limbs. A “bottom-up” inverse dynamics approach (stepwise estimates at the ankle 

proceeded by knee and hip joints) was used to estimate reaction forces and moments at 

the lower back which was considered to be the superior level of the pelvis (Freivalds et al. 

1984, Song and Qu 2014) (Fig. 1). Projections of the lower back reaction forces 

perpendicular (axial) and parallel (shearing) to the L5-S1 intervertebral discs were 

calculated to represent the contribution of task demand to total axial and shearing forces 

(i.e., task demand plus the response from internal tissues). The standing orientation of the 

L5-S1 intervertebral disc, with respect to the gravity direction, was considered to be 50 

degrees for 40-50 and 50-60 age groups and 54 degrees for the 60-70 age group (Schwab 

et al. 2006) for both patient and control groups. The axial and shearing demand as well 

as the moment demand on the lower back throughout the entire task are shown in Fig. 3 

for a typical subject. Estimated forces and moments were normalized to individual body 

mass and body mass*stature, respectively. To be able to present the kinetics measures 

in a more clinically-meaningful sense, the normalized values were multiplied by the mean 

body mass and mean body mass*stature across participants (multiplying the measures by 

a constant value will not affect the results of statistical analyses).   
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Figure 4-3: A typical example of axial and shearing demand (left) and the moment 

demand (right) on the lower back throughout the entire lowering and lifting task.  

 

4.2.4. Statistical Analysis 

The dependent measures included the axial, shearing, and the moment components of 

task demand as well as several measures of trunk kinematics. Specifically, for each phase 

of task, the values of components of task demand at the time of peak moment component 

(TPMC) as well as the peak pelvic and thoracic rotations along with the corresponding 

values of lumbar flexion were used for statistical analyses. Mixed-model analysis of 

variance (ANOVA) tests were conducted on the task demand variables with group (with 

and without LBP) and age (40-50, 50-60, and 60-70) as the between-subjects factors and 

task phase (lowering and lifting) as the within-subjects factor. Furthermore, univariate 

ANOVA tests were used to determine effects of group and age and their interaction on the 

kinematics variables. Mixed-model and univariate ANOVA assumptions were verified, and 

significant ANOVA tests were followed by post hoc tests using Tukey’s procedure.  All 

statistical analyses were performed using SPSS (IBM SMSS Statistics 23, Armonk, NY, 

USA), and summary values are reported as means (SD). A p value ≤ 0.05 was considered 

as statistically significant for all measurements. 

 

4.3. Results 

4.3.1. Interaction Effects 
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There was a significant interaction effect of group by age on the shearing component of 

task demand (Table 2). Specifically, for individuals in 40-50 age group the shearing 

component was larger (F=7.85, p=0.026) in patients (457.9N ± 23.0N) vs. controls (384.2N 

± 31.6N). 

 

4.3.2. Main Effects 

Group 

There were no differences in the moment component of task demand between patients 

with non-chronic LBP and asymptomatic controls, whereas the axial component at TPMC 

was smaller in patients vs. controls (Table 2 and Table 3). Moreover, the patient group 

adopted a smaller peak thoracic rotation as well as a smaller peak lumbar flexion (Table 

2 and Table 3).  

Age 

There were no age-related differences in any of the kinetics and kinematics outcome 

measures (Table 2 and Table 3). 

Task phase 

Larger moment and smaller axial components of task demand at TPMC were observed 

during lowering vs. lifting phase of the task (Table 2 and Table 3). 
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Table 4-2: Summary of statistics results for the effects of group (patients with non-chronic LBP and controls), 

age (40-50, 50-60, and 60-70), and task phase (lowering and lifting) on the components of task demand as 

well as trunk kinematics for the lowering and lifting task. TPMC: Time of peak moment component. 

Task Demands at TPMC Peak Kinematics 

Moment Shearing Axial Thoracic Rotation Pelvic Rotation Lumbar Flexion 

F p F p F p F p F p F p 

Group (G) 0.06 0.806 6.10 0.020 8.10 0.008 7.91 0.009 3.60 0.068 18.06 <0.001 

Age (A) 0.21 0.812 1.59 0.222 2.40 0.110 0.10 0.903 2.34 0.114 1.68 0.203 

Phase (P) 4.32 0.047 3.41 0.076 5.46 0.027 - - - - - - 

G XA 1.48 0.247 3.53 0.043 0.11 0.894 2.25 0.124 0.37 0.692 1.14 0.335 

G XP 0.75 0.395 0.12 0.737 3.31 0.080 - - - - - - 

A XP 1.39 0.268 1.58 0.224 2.98 0.068 - - - - - - 

G X A X P 0.61 0.552 0.10 0.904 0.71 0.501 - - - - - - 

Boldface indicates significant effect
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Table 4-3: Summary of outcome measures including mean (SD) for the effects of group (patients with non-

chronic LBP and asymptomatic controls) and age (40-50, 50-60, 60-70), and task phase (lowering and lifting) 

on the components of task demand as well as trunk kinematics for the lowering and lifting task. TPMC: Time 

of peak moment component. 

Group Age Task Phase 

Patients Controls 40-50 50-60 60-70 Lowering Lifting 

Task 

Demands at 

TPMC 

Moment(Nm) 89.5 (19.0) 89.6 (26.6) 88.2 (24.8) 87.4 (20.0) 93.3 (24.8) 91.8 (20.6) 87.3 (25.0) 

Shearing (N) 446.7 

(36.0) 
415.5 (47.3) 409.8 (56.7) 449.0 (38.1) 429.3 (31.3) 424.1 (42.9) 438.5 (45.0) 

Axial (N) 74.2 (81.9) 159.1 (80.8) 176.3 (77.9) 96.9 (82.3) 88.7 (89.3) 103.4 (89) 127.1 (91.7) 

Peak 

Kinematics 

Thoracic Rotation(°) 75.2 (10.3) 85.4 (11.3) 81.4 (13.4) 80.9 (7.5) 78.6 (14.7) - - 

Pelvic Rotation (°) 42.6 (10.2) 34.0 (11.9) 29.7 (10.1) 42.0 (11.6) 40.9 (10.7) - - 

Lumbar Flexion (°) 32.6 (11.0) 51.4 (13.4) 51.6 (16.2) 39.0 (12.4) 37.6 (15.6) - - 
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4.4. Discussion 

The purpose of this study was to investigate differences in the mechanical demands of a 

lowering and lifting task in the sagittal plane on the lower back between a group of females 

with non-chronic LBP and a group of asymptomatic females. We did not find any 

differences in the peak moment component of task demand between the patients and 

controls, however, the shearing (40-50 age group) and axial components of task demand 

at TPMC were, respectively, larger and smaller in patients vs. controls. These between 

group differences rejected our hypothesis on moment demand of task, but confirmed our 

hypothesis on the shearing and the axial components of task demand. 

 

While several studies have investigated the differences in the mechanical demand of 

physical tasks on the lower back between patients with chronic LBP and controls, only a 

few studies investigated such differences between patients with non-chronic LBP and 

controls (Danneels et al. 2002, Shum et al. 2007, Shum et al. 2010). For a trunk forward 

bending and backward return task, Shum et al. (2010) reported larger moment demand at 

smaller flexion angle and smaller moment demand at the end range of forward bending 

between patients with non-chronic LBP and controls. Instead of point-by-point 

comparison, we compared peak moment demand between the groups which happened 

to occur at ~ 85% of trunk end range of flexion in both groups. Considering that the 

transition from larger to smaller differences in the reported differences in moment demand 

between patients and controls by Shum et al. (2010) occurred somewhere between the 

mid and the end range of trunk flexion, our results seem to be consistent with their findings. 

Danneels et al. (2002) reported similar electromyography (EMG) activity of the multifidus 

and iliocostalis lumborum pars thoracis in patients with non-chronic LBP and controls 

during coordination and strength exercises (Danneels et al. 2002). Our finding of similar 

moment mechanical demands on the lower back, though an indication of comparable total 

internal tissue responses to the task demand in both groups, doesn’t suggest comparable 

active muscle response. Specifically, the observed smaller lumbar flexion in patients 

(Table 2 to Table 4) suggests a smaller passive contribution of lower back tissues in 

offsetting the moment demand of task (Shojaei et al. 2016), hence an indication of larger 

active muscle contribution. Participants were instructed to bend forward with a 

straightened back (i.e., controlled contribution of passive tissues in offsetting the task 

demand) in Danneels et al. (2002); an instruction that could be the reason for differences 
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between our findings and those of Danneels et al. (2002).It is also notable that unlike the 

findings on similar EMG activity of the muscles in patients with non-chronic LBP vs. 

controls (Danneels et al. 2002), Danneels et al. (2002) reported lower EMG activity of the 

muscles in patient with chronic LBP vs. control.  

 

Our hypothesis on smaller moment demand of task in patients was driven by our findings 

in an earlier study wherein we observed similar peak thorax rotation but smaller peak 

angular acceleration during free trunk forward bending and backward return in patients vs. 

controls (Shojaei et al. 2017). Smaller peak thorax rotation also was observed in patients 

in this study, hence further supporting our hypothesis on moment demand. However, we 

did not find any differences in the moment demand between the groups. The reason for 

such lack of difference was that the thoracic rotation as well as the thorax angular 

acceleration at TPMC were comparable between patients and controls (Table 4).  

 

Table 4-4: Statistics results as well as outcome measures including mean (SD) for the 

effects of group (LBP patients or asymptomatic controls) on kinematics characteristics of 

the lowering and lifting task at the time of peak moment component (TPMC). 

 Kinematics at TPMC 

 Thoracic Rotation (°) Pelvic Rotation (°) Lumbar Flexion (°) 
Thorax Angular 

Acceleration (°/s2) 

 F p F p F p F p 

Group 0.14 0.709 8.84 0.006 9.45 0.005 0.35 0.562 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Patients 68.8(10.6) 38.7 (10.6) 30.0 (9.8) 92.1 (60.5) 

Controls 69.7 (17.6) 26.9 (11.5) 42.9 (13.7) 82.1 (72.0) 

 

Furthermore, our hypothesis on larger shearing and smaller axial components of the task 

demand in patients with non-chronic LBP versus controls was based on our earlier 

observation of larger pelvic rotation in patients vs. controls during free trunk forward 

bending and return. In contrast to free motion, peak pelvic rotation was found to be 

comparable between the groups (Tables 2 and 3) in this study. Nevertheless, our 

hypothesis was approved as pelvic rotation at TPMC, where the statistical analyses for 
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the task demands were performed, was larger in patients (Table 4). Additionally, the 

difference in pelvic rotation between patients and controls was larger (not statistically 

though) in 40-50 years old age group compared to the other two age groups (i.e., 14.5, 

9.2, and 8 degrees in respectively 40-50, 50-60, and 60-70 age groups). Such an age by 

group difference in pelvic rotation may had a role in the observed differences in shearing 

demand of the task only in the 40-50 years old age group. 

 

As compared to controls, patients significantly changed their lumbo-pelvic kinematics from 

the free-style trunk motion to the lowering and lifting task considered in this study. 

Specifically, patients vs. control adopted a much smaller thorax range of rotation in the 

lowering and lifting task (i.e., 75.2 vs. 85.4) than in free-style forward bending (104.6 vs. 

99.1). Such a reduction in the peak thoracic rotation in patients was achieved by a 

reduction in the lumbar contribution to the thoracic rotation from 43° to 32.6° (~ 24% 

reduction), while the reduction in the lumbar contribution to the thoracic rotation in the 

control group was from 55.7° to 51.4° (~ 8% reduction). The significant reduction of the 

lumbar contribution under the lowering and lifting task may be an overprotective 

neuromuscular strategy in patients, for instance, to avoid likely overstretching of pain 

sensitive tissues in the posterior elements of the ligamentous spine. 

 

We found larger moment demand on the lower back under lowering (91.8 Nm) vs. lifting 

(87.3 Nm) phase of the task that is consistent with the reports on higher occurrence of 

musculoskeletal injuries (i.e., 67%) during lowering tasks (Lamonde 1987). However, the 

literature on differences in mechanical loads on the lower back under lowering vs. lifting 

tasks is not consistent; there are reports of smaller (De Looze et al. 1993, Larivière et al. 

2002), similar (Gagnon and Gagnon 1992), and larger (Davis et al. 1998) mechanical 

loads on the lower back under lowering vs. lifting tasks. Such inconsistency in the reported 

mechanical loads can be due to the differences in task characteristics (e.g., the weight of 

load carried, lift origin and destination) and the lifting technique (e.g., a standardized lifting 

technique or motion pace vs. a free-style technique). 
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Our findings contribute to the current understanding of mechanical demands of a sagittally 

symmetric lowering and lifting task on the lower back in patients with non-chronic, non-

specific LBP, however, there are study limitations. We only recruited female patients, 

therefore, generalizability of the study findings is limited. We did not asked the participants 

about their level of pain when performing the tasks, therefore, it remains unclear if and 

how the observed changes in trunk kinematics and the resultant kinetics were affected by 

their perception of pain during the experiment. Due to lack of reports on incidence and 

alignment of pelvis in patients with non-chronic LBP and also inconclusive results from the 

literature (Legaye et al. 1998, Jackson et al. 2000, Hanson et al. 2002, Marty et al. 2002, 

Jackson et al. 2003) for patients with chronic LBP, same values of sacral orientation were 

used for both patients and controls when calculating axial and shearing projections of 

lower back reaction forces. While mechanical demand of physical tasks on the lower back 

constitutes a small portion of spinal load (i.e., ~ 20%), it directly influences internal muscle 

responses that constitute the major portion of spinal loads. Studying muscle response and 

the resultant spinal loads, however, requires detailed model-based studies (Bazrgari et al. 

2008, Arjmand et al. 2009) as well as electromyography-based measures of the trunk 

muscles (Callaghan and McGILL 2001). 

 

In summary, we found patients with non-chronic LBP vs. controls adopt distinct trunk 

kinematics involving less lumbar flexion to perform lifting and lowering task, leading to our 

observation of differences in the shearing and axial demands of the task on the lower back 

between the two groups. Although such kinetics differences might have been driven by a 

neuromuscular effort to minimize lumbar flexion in patients, it directly affects equilibrium 

and stability of the spine, and hence, the load experienced in the lower back tissues. 

Regardless of the underlying source of such kinetics differences in patients with LBP, their 

impact on spine equilibrium and stability and lower back loading should be further 

investigated. Given the continuity of the spinal column, alterations in mechanical 

contributions to task demand in one area/component should be compensated by another 

area/component. The likelihood of further injury and/or structural changes in the lower 

back tissues that can lead to persistence of LBP increases if the tissue(s) offering 

compensatory mechanical contributions are not evolved for such response. Furthering 

knowledge of these biomechanical differences can positively impact the efficiency of 

present management paradigm for LBP and can help better match patient pathology with 
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target treatments with the long-term goal of avoiding LBP recurrence and/or progression 

from a non-chronic to a chronic stage.  
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Chapter 5. Discussion 

5.1. Study objectives  

The objectives of this study, as the first step towards future prospective studies, were to 

investigate the lower back mechanical environment, using kinematics and kinetics 

biomechanical methods, in patients with non-chronic LBP.  

 

5.1.1. Findings and hypotheses 

Measures of magnitude and timing aspects of lumbo-pelvic coordination during trunk 

forward bending and backward return as well as measures of mechanical demand on the 

lower back during lowering and lifting tasks in the sagittal plane were investigated between 

patients with non-chronic LBP and age- and gender-matched asymptomatic individuals. 

Magnitude aspects of lumbo-pelvic coordination 

The thoracic range of rotation was similar in both groups. However, the contribution of 

pelvic rotation and lumbar flexion to range of thoracic rotation was, respectively, larger 

and smaller among patients compared to controls. Furthermore, patients adopted a slower 

pace compared to asymptomatic controls which was reflected in smaller values of the 

maximum angular velocity, deceleration and acceleration of lumbar flexion. These findings 

confirmed our first hypothesis (see 1.4) on magnitude aspects of lumbo-pelvic 

coordination. 

Timing aspects of lumbo-pelvic coordination 

Lumbo-pelvic coordination was more in-phase (i.e., denoted by smaller MARP values) 

and less variable (i.e., denoted by smaller DP values) in patients with non-chronic LBP vs. 

asymptomatic individuals. These findings confirmed our first hypothesis on timing aspects 

of lumbo-pelvic coordination. 

Mechanical demand on the lower back 

We did not find any differences in the peak moment component of task demand between 

the patients with non-chronic LBP and asymptomatic individuals, however, the shearing 

and axial components of task demand were, respectively, larger and smaller in patients 

vs. asymptomatic individuals. Our hypothesis on smaller moment demand of task in 
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patients was rejected, whereas our hypothesis on the shearing and the axial components 

of task demand (i.e., respectively, larger and smaller in patients) was confirmed. 

 

5.1.2. Interpretation  

Magnitude aspects of lumbo-pelvic coordination 

The smaller contribution of lumbar flexion to thoracic rotation, adopted by patients with 

non-chronic LBP, may be an attempt to reduce tension in posterior elements of the 

ligamentous spine that have embedded pain sensitive nerve endings (Adams et al. 2006). 

These results are also consistent with the reported persistent activation of the lumbar 

erector spinae muscles and the absence of flexion-relaxation phenomenon among 

patients with LBP which has been suggested to be an attempt to stabilize injured spinal 

structures and protect them from further injury (Colloca and Hinrichs 2005).  

 

The smaller lumbar contribution in patients with LBP compared to controls did not affect 

the task performance; both groups displayed a similar amount of thoracic rotation. The 

similar amount of thoracic movement was the result of using more pelvic rotation by patient 

with LBP compared to the controls. Large pelvic rotations impose higher shearing 

demands on the lower back (Shojaei et al. 2016) and are also associated with projection 

of a larger shearing component of internal muscle forces on the spine (Arjmand and 

Shirazi-Adl 2005). Therefore, an increased level of contact force on facet joints of the 

lumbar spine could be the negative cost of the adopted posture displayed by patients with 

non-chronic LBP. 

 

Higher order lumbo-pelvic kinematics have been suggested to be reliable objective 

measures of the trunk motion (Kroemer et al. 1990, Aluko et al. 2011) and can well 

distinguish patients with chronic LBP from asymptomatic controls (Marras et al. 1993). 

Similar to the study by Marras et al. (1993), where much larger difference was found in 

lumbar angular acceleration than angular velocity and flexion between patients with 

chronic LBP and controls (i.e., 5 degree, 49 deg/sec, and 251 deg/sec2 differences in the 

respective values of lumbar flexion, lumbar angular velocity, and lumbar angular 

acceleration), greater differences in angular acceleration were found in the present study 
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(i.e., 12.7 deg, 29.2 deg/sec, and >81 deg/sec2 differences in the respective values of 

lumbar flexion, lumbar angular velocity, and lumbar angular acceleration. 

Timing aspects of lumbo-pelvic coordination 

More in-phase and less variable lumbo-pelvic coordination, also known as phase-locked 

or rigid coordination (Mokhtarinia et al. 2016), is regarded as a protective motor control 

strategy to reduce the likelihood of painful deformation of spinal tissues under dynamic 

tasks. Such a strategy, however, demands higher levels of trunk muscles activation and 

co-activation which in turn can lead to increased spinal loads and muscle fatigue  (Bazrgari 

and Xia 2017). Also, MARP and DP were found to be smaller during the task with fast 

pace. These findings are consistent with earlier reports on the effects of task pace on trunk 

kinematics variability (Asgari et al. 2015). The more in-phase lumbo-pelvic coordination is 

consistent with the strategy to prevent painful deformation and injury (intensified by 

viscoelastic behavior and inertial demand of fast tasks) given the higher risk of injury under 

fast trunk motion (Bazrgari et al. 2008). 

Mechanical demand on the lower back 

Our hypothesis on smaller moment demand of task in patients was driven by our findings 

in an earlier study wherein we observed similar peak thorax rotation but smaller peak 

angular acceleration during free trunk forward bending and backward return in patients vs. 

controls (Shojaei et al. 2017). Smaller peak thorax rotation also was observed in patients 

in this study, hence further supporting our hypothesis on moment demand. However, we 

did not find any differences in the moment demand between the groups. The reason for 

such lack of difference was that the thoracic rotation as well as the thorax angular 

acceleration at TPMC were comparable between patients and controls (Table 4). Our 

finding of similar moment mechanical demands on the lower back, though an indication of 

comparable total internal tissue responses to the task demand in both groups, doesn’t 

suggest comparable active muscle response. Specifically, the observed smaller lumbar 

flexion in patients (Table 2 to Table 4) suggests a smaller passive contribution of lower 

back tissues in offsetting the moment demand of task (Shojaei et al. 2016), hence an 

indication of larger active muscle contribution. 
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Furthermore, our hypothesis on larger shearing and smaller axial components of the task 

demand in patients with non-chronic LBP versus controls was based on our earlier 

observation of larger pelvic rotation in patients vs. controls during free trunk forward 

bending and return. In contrast to free motion, peak pelvic rotation was found to be 

comparable between the groups (Tables 2 and 3) in this study. Nevertheless, our 

hypothesis was approved as pelvic rotation at TPMC, where the statistical analyses for 

the task demands were performed, was larger in patients (Table 4). 

 

5.1.3. Clinical relevance 

Better understanding of differences in lumbo-pelvic coordination during trunk forward 

bending and backward return between individuals with and without LBP is clinically 

important (White III and Panjabi 1978, Panjabi 2003, Van Hoof et al. 2012). Specifically, 

quantification of such differences, as done in this study, may improve the effectiveness of 

current management paradigm for LBP by positively impacting the diagnosis and 

treatment stages. More in-depth information about normal and abnormal trunk kinematics 

during trunk forward bending and backward return can help better match patient pathology 

with targeted treatments and decide whether a given treatment is moving the patient in 

the right direction.  

 

We found patients with non-chronic LBP vs. controls adopt distinct trunk kinematics 

involving less lumbar flexion to perform lifting and lowering task, leading to our observation 

of differences in the shearing and axial demands of the task on the lower back between 

the two groups. Although such kinetics differences might have been driven by a 

neuromuscular effort to minimize lumbar flexion in patients, it directly affects equilibrium 

and stability of the spine, and hence, the load experienced in the lower back tissues. Given 

the continuity of the spinal column, alterations in mechanical contributions to task demand 

in one area/component should be compensated by another area/component. The 

likelihood of further injury and/or structural changes in the lower back tissues that can lead 

to persistence of LBP increases if the tissue(s) offering compensatory mechanical 

contributions are not evolved for such response. Furthering knowledge of these 

biomechanical differences can positively impact the efficiency of present management 

paradigm for LBP and can help better match patient pathology with target treatments with 
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the long-term goal of avoiding LBP recurrence and/or progression from a non-chronic to 

a chronic stage.  

 

5.2. Study limitations 

Our findings should be interpreted with consideration of our study limitations. First, it 

remains unclear whether observed kinematic and kinetic differences between patients with 

LBP and asymptomatic individuals are the cause or consequence of LBP. Second, we did 

not control for inter subject variability such as anthropometric measures, potential 

musculoskeletal abnormalities like foot shape abnormalities, flat back, hyper-lordosis, fear 

of movement, and general health status. With this being said, there is the possibility of 

additional unknown factors that affect study outcomes and were not included in our 

analysis. Third, although we controlled for age and gender-related differences, the 

influence of differences in lumbar spine stiffness or mobility between groups on our finding, 

though perhaps minimal, should not be overlooked. Fourth, while studying magnitude and 

timing aspects of lumbo-pelvic coordination as well as mechanical demand on the lower 

back in patients with LBP provides some insights into neuromuscular control of trunk 

motion and load sharing between lower back tissues, quantification of such variables 

requires detailed model-based studies (Bazrgari et al. 2008, Arjmand et al. 2009, Shojaei 

et al. 2016). Finally, while our results raise several intriguing research questions, the 

relatively small sample of our patient group should be kept in mind.  

 

5.3. Future research 

In the present study we investigated the differences in lower back mechanical 

environment, using kinematics and kinetics biomechanical methods, between patients 

with non-chronic LBP and asymptomatic controls. We observed abnormalities in lumbo-

pelvic coordination of patients with non-chronic LBP when compared to controls. Whether 

such abnormal lumbo-pelvic coordination persists over time and if it plays a role in 

transition to chronic stage is unknown. Prospective studies are required to investigate the 

changes in lower back mechanical environment of patients with non-chronic LBP and to 

determine differences between those who recover and those who progress to chronic 

stage.  
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In the present study, since the patients were recruited after appearance of symptoms, 

whether the observed abnormal lumbo-pelvic coordination in patients was a consequence 

of LBP remains unclear. Prospective studies of lower back biomechanics conducted on 

asymptomatic individuals can provide insights into this research question through 

longitudinal study of lower back biomechanics in individuals who will end up developing 

LBP. Specifically, to make such a prospective study practical, investigating individuals 

involved in demanding occupations (e.g., nurses, truck drivers) with high rates of LBP 

prevalence is suggested.  
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